Abstract

Long‐offset transient electromagnetic (LOTEM) data from the Vesuvius volcano, in Italy, show that the EM response of the topography is a potential cause of data distortions. A modeling study was carried out to simulate the effect of mountainous terrain on vertical magnetic‐field time derivatives using a 3-D finite‐difference code. The objectives were to assess the importance of topographic effects and to help identify them in existing field data. The total effect of topography on the LOTEM response can be considered as a combination of four distortions of the corresponding responses for a flat terrain. First, the receiver is at some height above the flat surface. Second, the mountain acts as a conductive body displacing air. Third, large loop receivers are nonhorizontal and sense a combination of horizontal and vertical magnetic fields. Finally, the electromagnetic coupling between the mountain and deeper‐lying structure modifies the structure response. Each of the effects can be identified in field data recorded at Mount Vesuvius. The topographic induced distortions for the model used in this study are moderate in the sense that 1-D inversions of the theoretical data still recover the gross conductivity structure, albeit with small deviations from the true parameters. Although this result might imply that topography might be ignored during the first stage of an interpretation, no simple correction method is evident, so topography will have to be included in any 2-D or 3-D inversion attempt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call