Abstract

Microbial electrolysis cell assisted anaerobic digestion (MEC-AD) has recently been considered as an efficient method for degradations of refractory pollutants. To date, however, knowledge about whether and how MEC-AD enhances the degradations of refractory pollutants in sludge remains largely unknown. This study therefore aims to fill this knowledge gap through investigating the transformation of triclocarban (TCC), a widely used antimicrobial agent, in MEC-AD reactors. Experimental results showed that over 83.3 % of TCC was dechlorinated to less toxic dichlorocarbanilide, monochlorocarbanilide and carbanilide in MEC-AD reactors. However, the mass loss of TCC in AD reactor (the electrodeless control) was merely 0.53 %. The presence of electrodes promoted TCC dechlorination in MEC-AD reactors, while the applied voltages (0.6 and 0.8 V) promoted hydrogenotrophic methanogenesis. H2-utilizing Nitrospira and homoacetogenic Acetobacterium were recognized as potential TCC dechlorinators, with their abundances in the planktonic sludge of MEC-AD reactors being 5.0–16.5 times higher than those in AD reactor. The carbon brush electrodes in MEC-AD reactors caused the enrichment of acetoclastic Methanothrix and the complete removal of acetic acid, which thereby thermodynamically accelerated homoacetogenesis and H2-producing acetogenesis in the planktonic sludge. Moreover, the direct interspecies electron transfer using hydrogenase as terminal electron acceptor was enhanced in the planktonic sludge of MEC-AD reactors, which could also improve H2 production rate and stimulate the growth and activity of TCC dechlorinators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call