Abstract
Three-dimensional body scanners are attracting increasing interest in various application areas. To evaluate their accuracy, their 3D point clouds must be compared to a reference system by using a reference object. Since different scanning systems use different coordinate systems, an alignment is required for their evaluation. However, this process can result in translational and rotational misalignment. To understand the effects of alignment errors on the accuracy of measured circumferences of the human lower body, such misalignment is simulated in this paper and the resulting characteristic error patterns are analyzed. The results show that the total error consists of two components, namely translational and tilt. Linear correlations were found between the translational error (R2 = 0.90, … 0.97) and the change in circumferences as well as between the tilt error (R2 = 0.55, … 0.78) and the change in the body's mean outline. Finally, by systematic analysis of the error patterns, recommendations were derived and applied to 3D body scans of human subjects resulting in a reduction of error by 67% and 84%.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have