Abstract

Latency is a pervasive issue in various systems that can significantly impact motor performance and user perception. In medical settings, latency can hinder surgeons' ability to quickly correct movements, resulting in an experience that doesn't align with user expectations and standards of care. Despite numerous studies reporting on the negative effects of latency, there is still a gap in understanding how it impacts the use of augmented reality (AR) in medical settings. This study aims to address this gap by examining how latency impacts motor task performance and subjective perceptions, such as cognitive load, on two display types: a monitor display, traditionally used inside an operating room (OR), and a Microsoft HoloLens 2 display. Our findings indicate that both level of latency and display type impact motor performance, and higher latencies on the HoloLens result in relatively poor performance. However, cognitive load was found to be unrelated to display type or latency, but was dependent on the surgeon's training level. Surgeons did not compromise accuracy to gain more speed and were generally well aware of the latency in the system irrespective of their performance on task. Our study provides valuable insights into acceptable thresholds of latency for AR displays and proposes design implications for the successful implementation and use of AR in surgical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call