Abstract

Galvanic vestibular stimulation (GVS) involves the application of electrical current through electrodes placed exclusively at the mastoids or in combination with electrodes placed on other regions. It is a simple, safe modality to modulate and probe vestibular function. Despite a long history of use, it continues to be primarily used as a research tool with no fully developed therapeutic use. This is partly due to the fact that to further advance this technique, a better understanding of what structures are stimulated and by how much is needed. While models have been proposed to explain response, cellular and structural substrates confirmed empirically, the exact current flow pattern has not been investigated.The goal of this study is to therefore determine current flow patterns in GVS. In order to do so, we developed the first ultrahigh-resolution finite element model of GVS incorporating the tiny structures of interest in the inner ear. We simulated the Bilateral-Bipolar, Bilateral-Monopolar, and the Unilateral-Monopolar configurations. Specifically, we generated surface electric field magnitude plots for the brain and for structures considered most relevant to GVS mechanism of action- the semi-circular canals (SCC) and the otolith.Findings show that the Bilateral-Bipolar configuration results in the most spatially restricted flow while the Unilateral-Monopolar configuration results in the most diffuse. With respect to SCC and the otolith, both Bilateral-Bipolar and Bilateral-Monopolar configurations led to similar flow in both the left and right pairs. For the Unilateral-Monopolar configuration, we observed increased flow in the left pair.We expect via this first model developed for GVS, researchers investigating this technique to have a better understanding of the effects of different configurations. Anatomically detailed models like these may also help understand the mechanism of action and may guide the rational design of future GVS administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call