Abstract
Two benzonitrile derivatives, namely 4-(isopentylamino)-3-nitrobenzonitrile (PANB) and 3-amino-4-(isopentylamino)benzonitrile(APAB) have been synthesized and evaluated as corrosion inhibitors for mild steel (MS) in 1 M HCl solution at 303 K by gravimetric, potentiodynamic polarization (PDP) curves, and electrochemical impedance spectroscopy (EIS) methods, as well as Density Functional Theory (DFT) and molecular dynamics (MD) simulations. The results suggest that tested compounds are excellent corrosion inhibitors for mild steel with PANB showing superior performance. Polarization measurements revealed that PANB and APAB behaved as mixed type inhibitors. The polarization resistance, according to EIS studies, found to be dependent on the inhibitor's concentration. The adsorption of PANB and APAB on mild steel surface obeyed Langmuir's adsorption isotherm. On the one hand, DFT and MD simulations are being used to explain the effect of the molecular structure on the corrosion inhibition efficiency and on the other hand to simulate the adsorption of benzonitrile derivatives on mild steel surface. The protection of carbon steel in 1 M HCl was confirmed by using scanning electron microscope (SEM) and Atomic Force Microscopy (AFM). Electrochemical, DFT and MD simulations results are in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.