Abstract
The application of eco-friendly deep eutectic solvents (DES) in the functionalization and synthesis of adsorbent materials has gained significant research interest in recent times. These materials, employed for treating polluted water primarily through degradation or adsorption, are emerging as sustainable alternatives to traditional technologies. However, the information regarding the functionalization and synthesis of adsorbent materials using DES is dispersed throughout the literature. This review aims to consolidate and clarify the extensive information available on the synthesis and functionalization of DES-based adsorbents, their application in water treatment as nanomaterials, and the future prospects of such technologies. DES presents an ideal alternative to conventional solvents for modifying and functionalizing adsorbents due to their lower toxicity, cost-effectiveness, and environmental friendliness. Most DESs effectively introduce desired functionalities and enhance the surface area of adsorbents, thereby greatly enhancing the removal of pollutants. This review compiles recent literature on the synthesis and modification of graphene oxides, carbon nanotubes, metal oxides, and other materials for the degradation/adsorption of pharmaceuticals, herbicides, dyes, pesticides, heavy metal ions, and other water contaminants. Besides this, DES-based nanomaterials have potential future applications in nanotechnology, nanofluids, nanocatalysts, biosensors, environmental remediation, among others. The anticipated exponential growth in these areas underscores the urgent need for such a review.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.