Abstract
The understanding of the origin of electronic noise would be very important in semiconductor devices. Detecting time characteristics via statistical approaches has been known to be useful in complex systems. In this study, the ensemble Monte Carlo particle method is used to simulate electron transport in a layered III–V semiconductor at room temperature. Nonlinear/erratic spiking fluctuations are predominant at the onset of current instabilities. To explore time characteristics detrended fluctuation analysis is used to analyze interspike intervals in different scales. Interestingly, multifractal behaviors are responsible for this kind of electronic noise. Therefore, it indicates that many extra time-characteristic would emerge in semiconductor devices, which would be strongly related to polar optical phonon scattering for intervalley transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.