Abstract
Compositing is one of the most commonly performed operations in computer graphics. A realistic composite requires adjusting the appearance of the foreground and background so that they appear compatible; unfortunately, this task is challenging and poorly understood. We use statistical and visual perception experiments to study the realism of image composites. First, we evaluate a number of standard 2D image statistical measures, and identify those that are most significant in determining the realism of a composite. Then, we perform a human subjects experiment to determine how the changes in these key statistics influence human judgements of composite realism. Finally, we describe a data-driven algorithm that automatically adjusts these statistical measures in a foreground to make it more compatible with its background in a composite. We show a number of compositing results, and evaluate the performance of both our algorithm and previous work with a human subjects study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.