Abstract

The evaluation of prairie restorations tends to focus on aboveground properties such as changes in plant diversity and the encroachment of non-native species. As a result, knowledge gaps persist concerning belowground controls of restoration success. To address these gaps at a 13-year-old prairie restoration site in Madison, Wisconsin, we spatially compared soil chemical, physical, and hydrological properties in two adjacent parcels that differed markedly in response to a tallgrass prairie restoration. We hypothesized that soil properties and their heterogeneity would differ significantly between the two parcels and that these differences would help explain the divergent response. In support of this hypothesis, soil organic matter, pH, and total nitrogen were significantly lower (p = 0.007, p < 0.001, and p = 0.006, respectively) in the restored parcel compared to the parcel that has yet to respond to any restoration efforts. Moreover, despite no significant difference in soil average bulk density between the two parcels, the restored parcel had significantly lower sand and silt fractions overall (p = 0.039 and p = 0.040, respectively). In contrast, except for total nitrogen, there were no apparent differences in the spatial heterogeneity of the measured soil properties between the restored and unrestored parcels, which did not support the second hypothesis of this study. These results demonstrate the utility of measuring belowground properties when assessing unexpected outcomes of prairie restorations as well as inform future hypothesis-driven experiments to determine which soil properties impede restoration and under what circumstances. KEYWORDS: Prairie Restoration; Bulk Density; Soil Organic Matter; Soil Properties; Soil Texture; Spatial Heterogeneity

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call