Abstract
Niobium (Nb) is a widely recognized micro-alloying element due to its low cost and substantial impact on steel properties. While the effect of Nb in processed steels has been well investigated, studies on its elemental distribution and precipitation behavior in weld metal remain scarce. This study focuses on the weld metal of specially designed Nb-rich X70 pipeline steel by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) characterization, complemented with thermodynamic and kinetics modeling analysis. In the majority of the weld, Nb was essentially uniformly distributed. This suggests that Nb primarily exists in the solid solution form in the weld metal, which is also supported by precipitation kinetics modeling results. This is primarily due to the short thermal history associated with the welding process, which leads to insufficient time for the uniform precipitation of Nb. Two instances of Nb precipitates were observed at the weld centerline and reinforcement region. The low partition coefficient of Nb results in an elevated local concentration along the weld centerline. However, precipitation kinetics calculations suggest that this enhancement alone is not adequate to induce precipitate formation. The occurrence of MnS and the prior formation of Ti precipitates may provide heterogeneous nucleation sites for Nb, facilitating the nucleation of Nb precipitates in the weld centerline and reinforcement region.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have