Abstract

Undercoordination chemistry is an effective strategy to modulate the geometry-governed electronic structure and thereby regulate the activity of sulfur electrocatalysts. Efficient sulfur electrocatalysis is requisite to overcome the sluggish kinetics in lithium-sulfur (Li-S) batteries aroused by multi-electron transfer and multi-phase conversions. Recent advances unveil the great promise of undercoordination chemistry in facilitating and stabilizing sulfur electrochemistry, yet a related review with systematicness and perspectives is still missing. Herein, it is carefully combed through the recent progress of undercoordination chemistry in sulfur electrocatalysis. The typical material structures and operational strategies are elaborated, while the underlying working mechanism is also detailly introduced and generalized into polysulfide adsorption behaviors, polysulfide conversion kinetics, electron/ion transport, and dynamic reconstruction. Moreover, perspectives on the future development of undercoordination chemistry are further proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call