Abstract

The interaction between predators and preys exhibits more complicated behavior under the influence of crowding effects. By taking into account the crowding effects, the qualitative behavior of a prey–predator model is investigated. Particularly, we examine the boundedness as well as existence and uniqueness of positive steady-state and stability analysis of the unique positive steady-state. Moreover, it is also proved that the system undergoes Hopf bifurcation and flip bifurcation with the help of bifurcation theory. Moreover, a chaos control technique is proposed for controlling chaos under the influence of bifurcations. Finally, numerical simulations are provided to illustrate the theoretical results. These results of numerical simulations demonstrate chaotic long-term behavior over a broad range of parameters. The presence of chaotic behavior in the model is confirmed by computing maximum Lyapunov exponents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call