Abstract

Systems of complex partial differential equations, which include the famous nonlinear Schrödinger, complex Ginzburg–Landau and Nagumo equations, as examples, are important from a practical point of view. These equations appear in many important fields of physics. The goal of this paper is to concentrate on this class of complex partial differential equations and study the fixed points and their stability analytically, the chaotic behavior and chaos control of their unstable periodic solutions. The presence of chaotic behavior in this class is verified by the existence of positive maximal Lyapunov exponent.The problem of chaos control is treated by applying the method of Pyragas. Some conditions on the parameters of the systems are obtained analytically under which the fixed points are stable (or unstable).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.