Abstract

A bonded crack model method is presented for estimation of the stress intensity factor (SIF) for a 3D half-penny shaped crack originating at a bonded interface subjected to remote constant tensile and proportional bending loadings. Closed-form approximations are obtained for the SIF as a function of modulus ratio of bonded dissimilar materials. A combination of bonded crack model method and macro-level stress calculations in a structure without a crack (uncracked body analysis) significantly simplifies accurate estimation of SIF. The method was validated using 3D finite element computations. Since the proposed method requires no repetitive stress calculation as crack size changes, it is useful in life predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.