Abstract
A combination of experimental quasi-elastic neutron scattering (QENS) and deuterium solid-state nuclear magnetic resonance (2H NMR) techniques was used to uncover the molecular mobility of benzene confined in UiO-66 (Zr) MOF with a 3D cage-window-cage type porous network topology. We have shown that tetrahedral and octahedral cages of UiO-66 offer notably different states of confinement for benzene. Below 163 K, the guest molecules of benzene are represented by two different dynamic states: in the smaller (tetrahedral) cage the benzene is able to exhibit only anisotropic C6 rotation and some limited librations. In the octahedral cage, there is enough space for additional C2 axial rotation and the isotropic random reorientation. Rotational motions have been characterized by the rate constants and corresponding activation energies. The two dynamic states merge as the temperature increases due to translational jump diffusion with the limiting step being the passage through the window between the cages. Both ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.