Abstract

Intracellular pH (pHi) imaging is of paramount importance for life sciences. In this work, we implement the ultrafast electronic and stimulated Raman spectroscopies to unravel the fluorescence mechanism of an excitation-ratiometric pHi indicator in basic aqueous solution. After photoexcitation of the pHi indicator HPTS, a hidden charge-transfer (CT) state following the locally excited (LE) state is uncovered as an essential step prior to fluorescence and this LE → CT transition is gated by ultrafast solvation dynamics. A 835 cm-1 intermolecular vibrational mode is identified to potentially facilitate the CT-state formation on the 700 fs time scale. Dynamic correlation with the other excited-state Raman marker bands suggests that the transition between transient electronic states is aided by solvation events mostly in the molecular plane of HPTS. These vivid structural dynamics insights can enable the rational design of more efficient and bright pHi indicators in an H-bonding environment with controllable properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.