Abstract

The influence of localized excited (LE) states on the spectroscopy of charge transfer (CT) complexes has been examined for a series of complexes formed between methyl-substituted benzene donors and 1,2,4,5-tetracyanobenzene as acceptor in 1,2-dichloroethane and octanenitrile solvents. A molecular orbital model was used to describe the appearance of multiple CT absorption bands that occur in the spectra of these complexes. The influence of LE states in these CT absorptions was explored using time-resolved linear dichroism spectroscopy where the direction of the CT transition moment vector (TMV) was used to probe the magnitude of intensity borrowing. The TMV directions for each of the observed CT transitions within the absorption spectra were determined for several complexes. In some cases, the observed CT transitions were interpreted as being pure CT transitions; in others the observed transitions are influenced significantly by a LE transition. The correlation between the TMV directions and the transition energy suggests that the magnitude of intensity borrowing is influenced not only by the energy difference between the CT and LE transitions but also by the specific character of the transitions under consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call