Abstract
We present a framework for describing the evolution of stochastic observables having a nonstationary distribution of values. The framework is applied to empirical volume-prices from assets traded at the New York Stock Exchange, about which several remarks are pointed out from our analysis. Using Kullback-Leibler divergence we evaluate the best model out of four biparametric models commonly used in the context of financial data analysis. In our present data sets we conclude that the inverse Γ distribution is a good model, particularly for the distribution tail of the largest volume-price fluctuations. Extracting the time series of the corresponding parameter values we show that they evolve in time as stochastic variables themselves. For the particular case of the parameter controlling the volume-price distribution tail we are able to extract an Ornstein-Uhlenbeck equation which describes the fluctuations of the highest volume-prices observed in the data. Finally, we discuss how to bridge the gap from the stochastic evolution of the distribution parameters to the stochastic evolution of the (nonstationary) observable and put our conclusions into perspective for other applications in geophysics and biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.