Abstract
The Kullback-Leibler (KL) information measure l(f/sub 1/:f/sub 2/) is proposed as an index for studying rates of convergence of densities and distribution functions. To this end, upper bounds in terms of l(f/sub 1/:f/sub 2/) for several distance functions for densities and for distribution functions are obtained. Many illustrations of the use of this technique are given. It is shown, for example, that the sequence of KL information measures converges to zero more slowly for a normalized sequence of gamma random variables converging to its limiting normal distribution than for a normalized sequence of largest order statistics from an exponential distribution converging to its limiting extreme value distribution. Furthermore, a sequence of KL information measures for log-normal random variables approaching normality converges more slowly to zero than for a sequence of normalized gamma random variables.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.