Abstract

Inflammation acts as a dual role in disease initiation and progression, while Cannabis sativa L. (hemp) seeds, known for their abundance of anti-inflammatory phytochemicals, present a promising food source. Additionally, fermentation may optimize the food matrix, thereby augmenting its developmental prospects. This study explores the anti-inflammatory potential of hemp seeds fermented with 10 different probiotic strains. Among these, Lactiplantibacillus plantarum fermented hemp seeds (FHS) demonstrated a significant anti-inflammatory ability, accompanied by a reduction in the expression of critical inflammatory markers such as TLR4, NF-κBp65, and iNOS. Moreover, there is a noteworthy dose-dependent inhibition of inflammatory cytokines TNF-α, IL-6, IL-1β, and NO within a concentration range of 50 to 500 µg/mL. Subsequently, metabolomics analysis using UHPLC-QTOF-MS highlighted significant metabolic alterations in FHS compared to raw hemp seeds (RHS). Through multivariate, univariate, and correlation analyses, indolelactic acid (IA) and homovanillic acid (HVA) emerged as the main anti-inflammatory metabolites in FHS. Validation via HPLC confirmed the concentration of IA and HVA in RHS and FHS and both organic acids demonstrated lower IC50 values for TNF-α, IL-1β, IL-6, IL-18, and NO inhibition, showcasing their potent anti-inflammatory abilities. Furthermore, in vitro gastro-intestinal digestion coupled with the Caco-2 cell monolayer model validates the uptake and bioaccessibility of FHS, further affirming IA and HVA as major anti-inflammatory compounds. Overall, this research sets the stage for the development of novel hemp seed-based products targeting inflammation-associated disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.