Abstract
Compaction disrupts soil structure, reducing root growth, nutrient and water uptake, gas exchange, and microbial growth. Root growth inhibition by soil compaction was originally thought to reflect the impact of mechanical impedance and reduced water availability. However, using a novel gas diffusion-based mechanism employing the hormone ethylene, recent research has revealed that plant roots sense soil compaction. Non-compacted soil features highly interconnected pore spaces that facilitate diffusion of gases such as ethylene which are released by root tips. In contrast, soil compaction stress disrupts the pore network, causing ethylene to accumulate around root tips and trigger growth arrest. Genetically disrupting ethylene signalling causes roots to become much less sensitive to compaction stress. Such new understanding about the molecular sensing mechanism and emerging root anatomical traits provides novel opportunities to develop crops resistant to soil compaction by targeting key genes and their signalling pathways. This expert view discusses these recent advances and the molecular mechanisms associated with root-soil compaction responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.