Abstract

Upland cotton wild/landraces represent a valuable resource for disease resistance alleles. Genetic differentiation between genotypes, as well as variation in Verticillium wilt (VW) resistance, has been poorly characterized for upland cotton accessions on the domestication spectrum (from wild/landraces to elite lines). To illustrate the effects of modern breeding on VW resistance in upland cotton, 37 wild/landraces were resequenced and phenotyped for VW resistance. Genomic patterns of differentiation were identified between wild/landraces and improved upland cotton, and a significant decline in VW resistance was observed in association with improvement. Four genotypes representing different degrees of improvement were used in a full-length transcriptome analysis to study the genetic basis of VW resistance. ROS signaling was highly conserved at the transcriptional level, likely providing the basis for VW resistance in upland cotton. ASN biosynthesis and HSP90-mediated resistance moderated the response to VW in wild/landraces, and loss of induction activity of these genes resulted in VW susceptibility. The observed genomic differentiation contributed to the loss of induction of some important VW resistance genes such as HSP90.4 and PR16. Besides providing new insights into the evolution of upland cotton VW resistance, this study also identifies important resistance pathways and genes for both fundamental research and cotton breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call