Abstract
During epithelial morphogenesis, the establishment of tight junctions precedes the development of both the asymmetry in protein and lipid composition between apical and basolateral cell surfaces (the 'fence' function) and the restriction in the transport of ions and nonelectrolytes through the extracellular clefts between cells (the 'gate' function). Molecular models that explain both functions envision strands of particles extending as rings in the cell's perimeter that interact with similar strands located at the apposing cell. This model accounts for the 'fence' function, because the strands prevent diffusion of protein and lipids, and also for the 'gate' function, because the interaction between strands minimizes the width of the extracellular clefts, increasing transepithelial resistance to ions and decreasing non-electrolyte permeability. Here we describe the results of energy depletion, which for the first time separates both functions: it abolishes the gate function, as determined by the dramatic decrease in transepithelial resistance, but it leaves the fence function intact, as determined by the maintenance of lipid polarity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.