Abstract

A small experimental cryolesion to the right parietal cortex of juvenile mice causes late-onset global brain atrophy with memory impairments, reminiscent of cognitive decline, and progressive brain matter loss in schizophrenia. However, the cellular events underlying this global neurodegeneration are not understood. Here we show, based on comprehensive stereological analysis, that early unilateral lesion causes immediate and lasting bilateral increase in the number of microglia in cingulate cortex and hippocampus, consistent with a chronic low-grade inflammatory process. Whereas the total number of neurons and astrocytes in these brain regions remain unaltered, pointing to a non- gliotic neurodegeneration (as seen in schizophrenia), the subgroup of parvalbumin-positive inhibitory GABAergic interneurons is increased bilaterally in the hippocampus, as is the expression of the GABA-synthesizing enzyme GAD67. Moreover, unilateral parietal lesion causes a decrease in the expression of synapsin1, suggesting impairment of presynaptic functions/neuroplasticity. Reduced expression of the myelin protein cyclic nucleotide phosphodiesterase, reflecting a reduction of oligodendrocytes, may further contribute to the observed brain atrophy. Remarkably, early intervention with recombinant human erythropoietin (EPO), a hematopoietic growth factor with multifaceted neuroprotective properties (intraperitoneal injection of 5000 IU/kg body weight every other day for 3 weeks), prevented all these neurodegenerative changes. To conclude, unilateral parietal lesion of juvenile mice induces a non- gliotic neurodegenerative process, susceptible to early EPO treatment. Although the detailed mechanisms remain to be defined, these profound EPO effects open new ways for prophylaxis and therapy of neuropsychiatric diseases, e.g. schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.