Abstract

Objectives: To examine how the differences in the sequences of brain activation during the go/no-go delayed response choice reaction time (RT) task are reflected into two concurrent methods of measuring brain electrical activity, the alpha band event-related desynchronization (αERD) and the contingent negative variation (CNV).Methods: αERD and CNV were calculated using appropriate techniques from the same samples of electroencephalographic activity recorded during performance of a cued choice go/no-go delayed response RT task (i.e. S1 (go/no-go)–S2 paradigm) in 8 healthy subjects.Results: All segments of the CNV traces were different in the go and the no-go conditions. The go CNV traces displayed a typical pattern of slow rising negativity reflecting the build-up of attentional resources necessary for adequate performance of the task. On the other hand, the no-go traces remained close to zero reflecting the ‘withdrawal’ of further preparation after evaluation of S1. During the same period, both go and no-go ERD traces showed a gradual decrease in alpha band power (desynchronization) that was evident until shortly before the presentation of S2. It was only in the 500 ms before S2 presentation that there was any indication that the go and no-go ERD traces were different, but this did not reach statistical significance.Conclusions: Our data show that the pattern of the go/no-go difference in αERD traces does not correspond to the pattern that can be seen in the CNV traces. This suggests that there is no direct coupling of CNV and αERD, most probably because they measure different aspects of cortical electrical activity. In addition, the extent of the no-go αERD reveals that refraining from performance of a pre-programmed movement is by no means a passive/inactive process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.