Abstract

ObjectiveClinical exploitation of transcranial electrical stimulation for focal epilepsy treatment lacks quantification of the underlying neurophysiological changes. This study explores the immediate effects of transcranial alternating (tACS) and direct (tDCS) current stimulation on local and network brain activity using simultaneous stereoelectroencephalography (SEEG) recordings. MethodsPatients were randomized for personalized tACS (n = 5) or tDCS (n = 6). Active stimulation (20 min) was preceded by sham stimulation (20 min). Changes in interictal epileptiform discharges (IED), functional connectivity (FC) and power spectral density (PSD) were quantified against baseline. ResultsResults demonstrated variable responses. Spike rate decreased in 2/6 subjects following sham and tDCS, while 2/6 showed an increase. Alpha power and aperiodic PSD components generally increased during and after tDCS but decreased following tACS. FC changes varied among subjects and were detectable even during sham sessions. ConclusionsStrong variability suggests that tES does not have a univocal effect on immediate changes in IED or FC, possibly due to the single session format and challenges in affecting subcortical areas. SignificanceThis is the first study to examine intracranial FC changes during tACS and tDCS, highlighting the importance of sham comparisons and individual variability in tES response, offering valuable insights into its application for epilepsy treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.