Abstract

1. Regulation of the increase in inositol phosphates (IPs) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in canine cultured tracheal epithelial cells (TECs). Stimulation of TECs by bradykinin (BK) led to IPs formation and caused an initial transient [Ca2+]i peak in a concentration-dependent manner. 2. Pretreatment of TECs with phorbol 12-myristate 13-acetate (PMA, 1 microM) for 30 min attenuated the BK-induced IPs formation and Ca2+ mobilization. The maximal inhibition occurred after incubating the cells with PMA for 2 h. 3. The concentrations of PMA that gave half-maximal (pEC50) inhibition of BK-induced IPs accumulation and an increase in [Ca2+]i were 7.07 M and 7.11 M, respectively. Inactive phorbol ester, 4alpha-phorbol 12,13-didecanoate at 1 microM, did not inhibit these responses. Prior treatment of TECs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. 4. In parallel with the effect of PMA on the BK-induced IPs formation and Ca2+ mobilization, the translocation and down-regulation of PKC isozymes were determined. Analysis of cell extracts by Western blotting with antibodies against different PKC isozymes revealed that TECs expressed PKC-alpha, betaI, betaII, gamma, delta, epsilon, theta and zeta. With PMA treatment of the cells for various times, translocation of PKC-alpha, betaI, betaII, gamma, delta, epsilon and theta from cytosol to the membrane was seen after 5 min, 30 min, 2 h, and 4 h treatment. However, 6 h treatment caused a partial down-regulation of these PKC isozymes. PKC-zeta was not significantly translocated and down-regulated at any of the times tested. 5. Treatment of TECs with 1 microM PMA for either 30 min or 6 h did not significantly change the KD, and Bmax receptor for BK binding (control: KD=1.7+/-0.3 nM; Bmax=50.5+/-4.9 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. 6. In conclusion, these results suggest that activation of PKC may inhibit the phosphoinositide hydrolysis and consequently attenuate the [Ca2+]i increase or inhibit independently both responses to BK. The translocation of pKC-alpha, betaI, betaII, delta, epsilon, gamma, and theta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilization in TECs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call