Abstract

1. Stimulation of bradykinin (BK) receptors coupled to phosphoinositide (PI) hydrolysis was investigated in canine cultured tracheal smooth muscle cells (TSMCs). BK, kallidin, and des-Arg9-BK, stimulated [3H]-inositol phosphates (IPs) accumulation in a dose-dependent manner with half-maximal responses (EC50) at 20 +/- 5, 13 +/- 4, and 2.3 +/- 0.7 nM, (n = 5), respectively. 2. D-Arg[Hyp3, D-Phe7]-BK and D-Arg[Hyp3, Thi5,8, D-Phe7]-BK, B2 receptor antagonists, were equipotent in blocking the BK-induced IPs accumulation with pKB = 7.1 and 7.3, respectively. 3. Short-term exposure of TSMCs to phorbol 12-myristate 13-acetate (PMA, 1 microM) attenuated BK-stimulated IPs accumulation. The concentrations of PMA that gave half-maximal and maximal inhibition of BK-induced IPs accumulation were 15 +/- 4 nM and 1 microM, n = 3, respectively. The inhibitory effect of PMA on BK-induced response was reversed by staurosporine, a protein kinase C (PKC) inhibitor, suggesting that the inhibitory effect of PMA was mediated through the activation of PKC. 4. Prolonged incubation of TSMCs with PMA for 24 h, resulted in a recovery of receptor responsiveness which may be due to down-regulation of PKC. The inactive phorbol ester, 4 alpha-phorbol 12, 13-didecanoate at 1 microM, did not inhibit this response. 5. The site of this inhibition was further investigated by examining the effect of PMA on AlF(4-)-induced IPs accumulation in canine TSMCs. AlF(4-)-stimulated IPs accumulation was inhibited by PMA treatment, suggesting that the G protein(s) can be directly activated by AlF4-, which is uncoupled from phospholipase C by PMA treatment. 6. Incubation of TSMCs in the absence of external Ca2+ or upon removal of Ca2+ by addition of EGTA, caused a decrease in IPs accumulation without changing the basal levels. Addition of Ca2+ (3-620 nM) to digitonin-permeabilized TSMCs stimulated IPs accumulation was obtained by inclusion of either guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) or BK. The combination of GTP gamma S and BK caused an additive effect on IPs accumulation.7. Pretreatment of TSMCs with cholera toxin enhanced BK-stimulated IPs accumulation, whereas there was no effect with pertussis toxin.8. These data suggest that BK-stimulated PI metabolism is mediated by the activation of BK B2 receptors coupling to a G protein which is not blocked by cholera toxin or pertussis toxin treatment and dependent on external Ca2+. The transduction mechanism of BK coupled to PI hydrolysis is sensitive to feedback regulation by PKC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call