Abstract

SUMMARYBased on the Lie-group-algebraic properties of the displacement set and intrinsic coordinate-free geometry, several novel 4-dof overconstrained hybrid parallel manipulators (HPMs) with uncoupled actuation of three spatial translations and one rotation (3T-1R) are proposed. In these HPMs, three limbs are those of Cartesian translational parallel mechanisms (CTPMs) and the fourth limb includes an Oldham-type constant velocity shaft coupling (CVSC). The Lie subgroup of Schoenflies (X) displacements of the displacement Lie group and its mechanical generators with nine categories of their general architectures are recalled. A comprehensive enumeration of all possible Oldham-type CVSC limbs is derived fromX-motion generators. Their constant velocity (CV) transmissions are verified by group-algebraic approach. Then, combining one CTPM and one CVSC, we synthesize a lot of uncoupled 3T-1R overconstrained HPMs, which are classified into nine distinct classes of general architectures. In addition, all possible architectures with at least one hinged parallelogram or with one cylindrical pair are disclosed too. At last, related non-overconstrained HPMs are attained by the addition of one idle pair in each limb of the previous HPMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.