Abstract

Abstract A 3-UPU translational parallel mechanism (TPM) is one of typical TPMs. Several types of 3-UPU TPMs have been proposed in the literature. Despite comprehensive studies on 3-UPU TPMs in which the joint axes on the base and the moving platform are coplanar, only a few 3-UPU TPMs with a skewed base and moving platform have been proposed. However, the impact of link parameters on singularity loci of such TPMs has not been systematically investigated. The advances in computing CGS (comprehensive Gröbner system) or Gröbner cover of parametric polynomial systems provide an efficient tool for solving this problem. This paper presents a systematic classification of 3-UPU TPMs, especially those with a skewed base and moving platform, based on constraint singularity loci. First, the constraint singularity equation of a 3-UPU TPM is derived. To simplify this equation, the coordinate frame on the base (or moving platform) is set up such that the centers of three U joints are located on different coordinate axes. Using Gröbner Cover, the 3-UPU TPMs are classified into 20 types based on the constraint singularity loci. Finally, a novel 3-UPU TPM is proposed. Unlike most of existing 3-UPU TPMs which can transit to two or more 3-DOF operation modes at a constraint singular configuration, the proposed 3-UPU TPM can only transit to one general 3-DOF operation mode in a constraint singular configuration. The singularity locus divides the workspace of this 3-UPU TPM into two constraint singularity-free regions. This work provides a solid foundation for the design of 3-UPU TPMs and a starting point for the classification of a general 3-UPU parallel mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call