Abstract

Motor imagery-based brain-computer interfaces (BCIs) training has been proved to be an effective communication system between human brain and external devices. A practical problem in BCI-based systems is how to correctly and efficiently identify and extract subject-specific features from the blurred scalp electroencephalography (EEG) and translate those features into device commands in order to control external devices. In real BCI-based applications, we usually define frequency bands and channels configuration that related to brain activities beforehand. However, a steady configuration usually loses effects due to individual variability among different subjects in practical applications. In this study, a robust tensor-based method is proposed for a multiway discriminative subspace extraction from tensor-represented EEG data, which performs well in motor imagery EEG classification without the prior neurophysiologic knowledge like channels configuration and active frequency bands. Motor imagery EEG patterns in spatial-spectral-temporal domain are detected directly from the multidimensional EEG, which may provide insights to the underlying cortical activity patterns. Extensive experiment comparisons have been performed on a benchmark dataset from the famous BCI competition III as well as self-acquired data from healthy subjects and stroke patients. The experimental results demonstrate the superior performance of the proposed method over the contemporary methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call