Abstract
Although the density peak clustering (DPC) algorithm can effectively distribute samples and quickly identify noise points, it lacks adaptability and cannot consider the local data structure. In addition, clustering algorithms generally suffer from high time complexity. Prior research suggests that clustering algorithms grounded in P systems can mitigate time complexity concerns. Within the realm of membrane systems (P systems), spiking neural P systems (SN P systems), inspired by biological nervous systems, are third-generation neural networks that possess intricate structures and offer substantial parallelism advantages. Thus, this study first improved the DPC by introducing the maximum nearest neighbor distance and K-nearest neighbors (KNN). Moreover, a method based on delayed spiking neural P systems (DSN P systems) was proposed to improve the performance of the algorithm. Subsequently, the DSNP-ANDPC algorithm was proposed. The effectiveness of DSNP-ANDPC was evaluated through comprehensive evaluations across four synthetic datasets and 10 real-world datasets. The proposed method outperformed the other comparison methods in most cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.