Abstract

In this work, we demonstrate an InAs nanowire photodetector at short-wavelength infrared (SWIR) composed of vertically oriented selective-area InAs nanowire photoabsorber arrays on InP substrates, forming InAs-InP heterojunctions. We measure a rectification ratio greater than 300 at room temperature, which indicates a desirable diode performance. The dark current density, normalized to the area of nanowire heterojunctions, is 130 mA/cm2 at a temperature of 300 K and a reverse bias of 0.5 V, making it comparable to the state-of-the-art bulk InAs p- i- n photodiodes. An analysis of the Arrhenius plot of the dark current at reverse bias yields an activation energy of 175 meV from 190 to 300 K, suggesting that the Shockley-Read-Hall (SRH) nonradiative current is the primary contributor to the dark current. By using three-dimensional electrical simulations, we determine that the SRH nonradiative current originates from the acceptor-like surface traps at the nanowire-passivation heterointerfaces. The spectral response at room temperature is also measured, with a clear photodetection signature observed at wavelengths up to 2.5 μm. This study provides an understanding of dark current for small band gap selective-area nanowires and paves the way to integrate these improved nanostructured photoabsorbers on large band gap substrates for high-performance photodetectors at SWIR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call