Abstract
We proposed an alternate method by using the Fe-doped InGaAsP-InP hybrid grating layers to fabricate the 1.3-μm current-blocking-grating complex-coupled distributed-feedback (CBG CC-DFB) laser diodes (LDs) grown by metal-organic chemical vapor deposition (MOCVD). By combining the Fe-doped InGaAsP-InP grating layers, the CBG CC-DFB LDs can provide high optical DFB coupling coefficient and high current confining ability. Moreover, the current aperture in the lateral direction can be easily controlled by the self-aligned MOCVD regrowth process. Therefore, the manufacture of CBG CC-DFB buried heterostructure LDs is easy as the ridge-waveguide LDs. The LDs exhibit a low threshold current of 5.3 mA, a high slope efficiency of 0.42 mW/mA, and a stable single mode with a high sidemode suppression ratio of /spl sim/42 dB at two times the threshold (10.5 mA). Even at high temperatures, these LDs still have an extremely low threshold current of 15.8 mA at 90/spl deg/ and a small variation in slope efficient of only -1 dB at the temperatures between 20/spl deg/ and 80/spl deg/. Furthermore, these LDs show a high-speed characteristic of more than 11.8 GHz at 20/spl deg/, which are suitable for 10-Gb/s Ethernet and OC-192 applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have