Abstract

We employ the weak-coupling renormalization group approach to study unconventional superconducting phases emerging in the extended, repulsive Hubbard model on paradigmatic two-dimensional lattices. Repulsive interactions usually lead to higher-angular momentum Cooper pairing. By considering not only longer-ranged hoppings, but also non-local electron-electron interactions, we are able to find superconducting solutions for all irreducible representations on the square and hexagonal lattices, including extended regions of chiral topological superconductivity. For the square, triangular and honeycomb lattices, we provide detailed superconducting phase diagrams as well as the coupling strengths which quantify the corresponding critical temperatures depending on the bandstructure parameters, band filling, and interaction parameters. We discuss the sensitivity of the method with respect to the numerical resolution of the integration grid and the patching scheme. Eventually we show how to efficiently reach a high numerical accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.