Abstract

The strong correlations between electrons in Mott insulator materials may produce highly entangled many-body states with unconventional emergent excitations. The signatures of such excitations, if any, are commonly believed to be observable only at low temperatures. Here, we challenge this common belief and show using terahertz time-domain spectroscopy that exotic carriers exist even at room temperature in TbInO3, a candidate material for realizing a low-temperature quantum spin-liquid phase. In particular, over the entire temperature range of 1.5–300 K, we observe a quadratic frequency dependence in the real part of the in-plane optical conductivity as well as Fano asymmetry of an optical phonon mode strongly interacting with the excitation continuum. These features are robust even under external magnetic fields of up to 7 T. Our data confirm the presence of emergent charge carriers within the Mott charge gap of TbInO3, suggesting that it is possible to probe and manipulate highly entangled quantum many-body states at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.