Abstract
Using scanning tunneling microscopy and spectroscopy, for a monolayer of transition metal dichalcogenide H-NbS2 grown by molecular beam epitaxy on graphene, we provide unambiguous evidence for a charge density wave (CDW) with a 3 × 3 superstructure, which is not present in bulk NbS2. Local spectroscopy displays a pronounced gap on the order of 20 meV at the Fermi level. Within the gap, low-energy features are present. The gap structure with its low-energy features is at variance with the expectation for a gap opening in the electronic band structure due to a CDW. Instead, comparison with ab initio calculations indicates that the observed gap structure must be attributed to combined electron-phonon quasiparticles. The phonons in question are the elusive amplitude and phase collective modes of the CDW transition. Our findings advance the understanding of CDW mechanisms in 2D materials and their spectroscopic signatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.