Abstract

In this article we consider the numerical modeling and simulation via the phase field approach for coupled two-phase free flow and two-phase porous media flow of different densities and viscosities. The model consists of the Cahn-Hilliard-Navier-Stokes equations in the free flow region and the Cahn-Hilliard-Darcy equations in porous media that are coupled by several domain interface conditions. It is showed that the coupled model satisfies an energy law. Then we first propose a coupled unconditionally stable finite element method for solving this model and analyze the energy stability for this method. Furthermore, based on the ideas of pressure stabilization and artificial compressibility, we propose an unconditionally stable time stepping method that decouples the computation of the phase field variable, the velocity and pressure of free flow, the velocity and pressure of porous media, hence significantly reduces the computational cost. The energy stability of this decoupled scheme with the finite element spatial discretization is rigorously established. We verify numerically that our schemes are convergent and energy-law preserving. Numerical experiments are also performed to illustrate the features of two-phase flows in the coupled free flow and porous media setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.