Abstract
In this paper, we develop a local multiscale model reduction strategy for the elastic wave equation in strongly heterogeneous media, which is achieved by solving the problem in a coarse mesh with multiscale basis functions. We use the interior penalty discontinuous Galerkin (IPDG) to couple the multiscale basis functions that contain important heterogeneous media information. The construction of efficient multiscale basis functions starts with extracting dominant modes of carefully defined spectral problems to represent important media feature, which is followed by solving a constraint energy minimization problem. Then a Petrov-Galerkin projection and systematization onto the coarse grid are applied. As a result, an explicit and energy-conserving scheme is obtained for fast online simulation. The method exhibits both coarse-mesh and spectral convergence as long as one appropriately chooses the oversampling size. We rigorously analyze the stability and convergence of the proposed method. Numerical results are provided to show the performance of the multiscale method and confirm the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.