Abstract

We consider the unconditional stability of second-order ADI schemes in the numerical solution of finite difference discretizations of multi-dimensional diffusion problems containing mixed spatial-derivative terms. We investigate an ADI scheme proposed by Craig and Sneyd, an ADI scheme that is a modified version thereof, and an ADI scheme introduced by Hundsdorfer and Verwer. Both sufficient and necessary conditions are derived on the parameters of each of these schemes for unconditional stability in the presence of mixed derivative terms. Our main result is that, under a mild condition on its parameter θ, the second-order Hundsdorfer and Verwer scheme is unconditionally stable when applied to semi-discretized diffusion problems with mixed derivative terms in arbitrary spatial dimensions k ⩾ 2 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.