Abstract

We consider the Modified Craig–Sneyd (MCS) scheme which forms a prominent time stepping method of the Alternating Direction Implicit type for multidimensional time-dependent convection–diffusion equations with mixed spatial derivative terms. Such equations arise often, notably, in the field of financial mathematics. In this paper a first convergence theorem for the MCS scheme is proved where the obtained bound on the global temporal discretization errors has the essential property that it is independent of the (arbitrarily small) spatial mesh width from the semidiscretization. The obtained theorem is directly pertinent to two-dimensional convection–diffusion equations with mixed derivative term. Numerical experiments are provided that illustrate our result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.