Abstract

This paper is concerned with uncertainty quantification analysis of complex systems subject to dependent input random variables. The analysis focuses on a new, generalized version of polynomial dimensional decomposition (PDD), referred to as GPDD, entailing hierarchically ordered measure-consistent multivariate orthogonal polynomials in dependent variables. Under a few prescribed assumptions, GPDD exists for any square-integrable output random variable and converges in mean-square to the correct limit. New analytical formulae are proposed to calculate the mean and variance of a GPDD approximation of a general output variable in terms of the expansion coefficients and second-moment properties of multivariate orthogonal polynomials. However, unlike in PDD, calculating the coefficients of GPDD requires solving a coupled system of linear equations. Besides, the variance formula of GPDD contains extra terms due to statistical dependence among input variables. The extra terms disappear when the input variables are statistically independent, reverting GPDD to PDD. Two numerical examples, the one derived from a stochastic boundary-value problem and the other entailing a random eigenvalue problem, illustrate second-moment error analysis and estimation of the probabilistic characteristics of eigensolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.