Abstract
ABSTRACT Due to the complexity of spill fire, predicting heat release rate (HRR) is a challenging aspect, therefore, identifying key contributors to uncertainty is essential to develop reliable models for fire risk assessment. We propose a framework that couples Artificial-Neural-Network (ANN) and Monte Carlo Uncertainty Quantification (UQ) to quantify the uncertainties of spill fire parameters on peak HRR variance. The ANN spill fire model, trained on experimental spill fire data, shows good agreement with measured HRR values. By coupling with Dakota for Monte Carlo uncertainty propagation, the framework identifies major contributors to peak HRR uncertainty for fixed and continuous unconfined spill fires. This is achieved by investigating two uncertainty sources: data scarcity and input parameters. UQ results indicate that the confidence intervals widen at points where data are scarcer. Sensitivity analysis shows that in the case of fixed quantity spills, the fuel amount and properties parameters contribute to 54.4% and 22.6% of peak HRR variance, respectively. For continuous spills, the discharge rate and fuel properties parameters account for 41.8% and 39.3% of peak HRR variance, respectively. This work can be utilized in developing more advanced predictive ANN models for spill fire scenarios, ultimately enhancing fire probabilistic safety analysis in nuclear power plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.