Abstract

In order to explore the hydrogen source term characteristics under severe accidents of marine pressurized water reactors (PWR) and effectively assess the hydrogen risk, the best estimation program SCDAP/RELAP5/MOD3.2 is used to establish the marine reactor severe accident analysis model. Based on the Latin Hypercube sampling (LHS) method and the Wilks sampling theory, a set of methods for the uncertainty analysis of severe accidents is developed. This method can be applied to the uncertainty and sensitivity analysis of different target parameters. The phenomenon identification and ranking table (PIRT) under the severe accident induced by the break are established, and 14 uncertain parameters are selected as input variables. The established PIRT fills the gap in the uncertainty and sensitivity analysis of severe accidents of marine reactors and provides a reference for subsequent research. The quantitative uncertainty analysis of the calculation results is carried out, and the uncertainty range of hydrogen production is defined. The Spearman correlation coefficient is used to evaluate the sensitivity of input parameters, and the sensitivity of each parameter to hydrogen production is obtained. The results show that under the severe accident caused by the medium equivalent diameter break, the uncertainty range of hydrogen production in the zirconium–water reaction in the pressure vessel is 20.14 kg~22.19 kg with 95% confidence, and the fuel cladding thickness has a significant positive correlation on the hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call