Abstract
Traditional support vector regression dedicates to obtaining a regression function through a tube, which contains as many as precise observations. However, the data sometimes cannot be imprecisely observed, which implies that traditional support vector regression is not applicable. Motivated by this, in this paper, we employ uncertain variables to describe imprecise observations and build an optimization model, i.e., the uncertain support vector regression model. We further derive the crisp equivalent form of the model when inverse uncertainty distributions are known. Finally, we illustrate the application of the model by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.