Abstract

While traditional support vector regression (SVR) models rely on loss functions tailored to specific noise distributions, this research explores an alternative approach: ε-ln SVR, which uses a loss function based on the natural logarithm of the hyperbolic cosine function (lncosh). This function exhibits optimality for a broader family of noise distributions known as power-raised hyperbolic secants (PHSs). We derive the dual formulation of the ε-ln SVR model, which reveals a nonsmooth, nonlinear convex optimization problem. To efficiently overcome these complexities, we propose a novel sequential minimal optimization (SMO)-like algorithm with an innovative working set selection (WSS) procedure. This procedure exploits second-order (SO)-like information by minimizing an upper bound on the second-order Taylor polynomial approximation of consecutive loss function values. Experimental results on benchmark datasets demonstrate the effectiveness of both the ε-ln SVR model with its lncosh loss and the proposed SMO-like algorithm with its computationally efficient WSS procedure. This study provides a promising tool for scenarios with different noise distributions, extending beyond the commonly assumed Gaussian to the broader PHS family.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call