Abstract

An extended formulation of a polytope is a linear description of this polytope using extra variables besides the variables in which the polytope is defined. The interest of extended formulations is due to the fact that many interesting polytopes have extended formulations with a lot fewer inequalities than any linear description in the original space. This motivates the development of methods for, on the one hand, constructing extended formulations and, on the other hand, proving lower bounds on the sizes of extended formulations. Network flows are a central paradigm in discrete optimization, and are widely used to design extended formulations. We prove exponential lower bounds on the sizes of uncapacitated flow-based extended formulations of several polytopes, such as the (bipartite and non-bipartite) perfect matching polytope and TSP polytope. We also give new examples of flow-based extended formulations, e.g., for 0/1-polytopes defined from regular languages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.