Abstract
We investigate the computing power of function algebras defined by means of unbounded recursion on notation. We introduce two function algebras which contain respectively the regressive logspace computable functions and the non-size-increasing logspace computable functions. However, such algebras are unlikely to be contained in the set of logspace computable functions because this is equivalent to L=P. Finally, we introduce a function algebra based on simultaneous recursion on notation for the non-size-increasing functions computable in polynomial time and linear space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.