Abstract

We propose a new black-box complexity model for search algorithms evaluating λ search points in parallel. The parallel unbiased black-box complexity gives lower bounds on the number of function evaluations every parallel unbiased black-box algorithm needs to optimise a given problem. It captures the inertia caused by offspring populations in evolutionary algorithms and the total computational effort in parallel metaheuristics. Our model applies to all unary variation operators such as mutation or local search. We present lower bounds for the LeadingOnes function and general lower bound for all functions with a unique optimum that depend on the problem size and the degree of parallelism, λ. The latter is tight for OneMax; we prove that a (1+λ) EA with adaptive mutation rates is an optimal parallel unbiased black-box algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.